
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Statistical Methodology for Approximating G=G=1 Queues
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Abstract: We consider a statistical methodology for the study of the strong stability of the M=G=1 queueing system
after disrupting the arrival flow. More precisely, we use nonparametric density estimation with boundary
correction techniques and the statistical Student test to approximate the G=G=1 system by the M=G=1 one,
when the general arrivals law G in the G=G=1 system is unknown. By elaborating an appropriate algorithm,
we effectuate simulation studies to provide the proximity error between the corresponding arrival distributions
of the quoted systems, the approximation error on their stationary distributions and confidence intervals for
the difference between their corresponding characteristics.

1 INTRODUCTION

In queueing theory performance evaluation may be
challenging task, for example, in the G=G=1 queue-
ing system, the Laplace transform and the generation
function are not available in closed form (Kleinrock,
1975). For this reason there exists, when a practi-
cal study is performed in queueing theory, a common
technique for substituting the real but complicated el-
ements governing a queueing system by simpler ones
in some sense close to the real elements. The queue-
ing model so constructed represents an idealization of
the real queueing one, and hence the stability prob-
lem arises. The stability problem in queueing theory
is concerned with the domain within which the ideal
queueing model may be taken as a good approxima-
tion of the real queueing system under consideration.
In other words, we clarify the conditions for which
the proximity in one way or another of the parameters
of the system involves the proximity of the studied
characteristics.

On the other hand, note that in practice all model
parameters are imprecisely known because they are
obtained by means of statistical methods. Such cir-
cumstances suggest to seek qualitative properties of
the real system, i.e., the manner in which the system
is affected by the changes in its parameters. These
qualitative properties include invariance, monotonic-
ity and stability. Its by means of qualitative properties
that bounds can be obtained mathematically and ap-
proximations can be made rigorously (Stoyan, 1983).

Even if the concept of stability is the same in a
general way, several approaches of the problem have
been elaborated. This led to the diversity of the defi-
nitions and the methods of stability (Borovkov, 1984;
Rachev, 1989). Moreover, there is a significant body
of literature on perturbation bounds of Markov chains.
One group of results uses the series expansion ap-
proach and the methods of matrix analysis (Heider-
gott and Hordijk, 2003; Heidergott et al., 2007). An-
other group employs the theory of operators and prob-
abilistic methods (Aı̈ssani and Kartashov, 1983; Kar-
tashov, 1996; Rachev, 1989).

In this work we will place more emphasis on the
strong stability method (Aı̈ssani and Kartashov, 1983;
Kartashov, 1996) which allows us to make both quali-
tative and quantitative analysis helpful in understand-
ing complicated models by more simpler ones for
which an evaluation can be made. This method, also
called ”method of operators” can be used to inves-
tigate the ergodicity and stability of the stationary
and non-stationary characteristics of the imbedded
Markov chains (Aı̈ssani and Kartashov, 1984; Kar-
tashov, 1996). In contrast to other methods, it sup-
poses that the perturbations of the transition kernel
are small with respect to some norms in the operators
space. This stringent condition gives better stability
estimates and enables us to find precise asymptotic
expansions of the characteristics of the perturbed sys-
tem.

Note that the first attempt to ”measure” the perfor-
mance of the strong stability method has been used
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in practice, and has been particularly applied to a
simple system of queues (Bouallouche and Aı̈ssani,
2006; Bouallouche and Aı̈ssani, ). The approach pro-
posed is based on the classical approximation method
where the authors perform the numerical proximity
of the stationary distribution of an Hyp=M=1 (respec-
tively M=Cox2=1) system by the one of an M=M=1
system when applying the strong stability method.
For the first time, Bareche and Aı̈ssani (Bareche and
Aı̈ssani, 2008) specify an approximation error on the
stationary distributions of the G=M=1 (resp. M=G=1)
and M=M=1 systems when the general law of ar-
rivals (resp. service times) G is unknown and its den-
sity function is estimated by using the kernel density
method. In (Berdjoudj et al., 2012), the authors use
the discrete event simulation approach and the student
test to measure the performance of the strong stabil-
ity method through simple numerical examples for a
concrete case of queueing systems (the G=M=1 queue
after perturbation of the service law (Benaouicha and
Aı̈ssani, 2005), and the M=G=1 limit model for high
retrial intensities (which is the classical M=G=1 sys-
tem) after perturbation of the retrials parameter (Berd-
joudj and Aı̈ssani, 2003)). The same idea has been
already investigated for an approximation analysis of
the classical G=G=1 queue when the general law of
service is unknown and must be estimated by differ-
ent statistical methods, pointing out particularly the
impact of those taking into account the correction of
boundary effects (Bareche and Aı̈ssani, 2011), see
also the recent work of (Bareche and Aı̈ssani, 2013).

Indeed, note that in practice all model parameters
are imprecisely known because they are obtained by
means of statistical methods. In this sense, our con-
tribution concerns one aspect which is of some prac-
tical interest and has not sufficiently studied in the lit-
erature, for instance when a distribution governing a
queueing system is unknown and we resort to non-
parametric methods to estimate its density function.
Besides, as the strong stability method assumes that
the perturbation is small, then we suppose that the ar-
rivals law of the G=G=1 system is close to the expo-
nential one with parameter l. This permits us to con-
sider the problem of boundary bias correction (Bouez-
marni and Scaillet, 2005; Chen, 2000; Schuster, 1985)
when performing nonparametric estimation of the un-
known density of the law G, since the exponential law
is defined on the positive real line.

It is why we use, in this paper, the tools of
nonparametric density estimation to approximate the
complex G=G=1 system by the simpler M=G=1 one,
on the basis of the theoretical results addressed in
(Aı̈ssani and Kartashov, 1984) involving the strong
stability of the M=G=1 system.

This article is organized as follows: In Section 2,
we describe the considered queueing models and we
present briefly the strong stability of the M=G=1 sys-
tem. A review of boundary bias correction techniques
in nonparametric density estimation is given in Sec-
tion 3. The main new results of this paper are pre-
sented in Section 4, which shows the interest of com-
bining these nonparametric methods with the strong
stability principle for the study of the M=G=1 system.
It also points out the importance of using the Student
test to compare the characteristics of the two consid-
ered queueing systems, and presents a numerical case
study based on simulation results.

2 STRONG STABILITY OF THE
M/G/1 SYSTEM AFTER
PERTURBATION OF THE
ARRIVAL FLOW

2.1 Description of M/G/1 and G/G/1
Models

Consider a G=G=1 (FIFO;¥) queueing system with
general service times distribution H and general inter-
arrival times probability distribution G. The following
notations are used: Tn (the arrival time of the nth cus-
tomer), qn (the departure time of the nth customer),
and gn (the time till the arrival of the following cus-
tomer after qn). Let us designate by nn = n(qn+0) the
number of customers in the system immediately after
qn. xn represents the service time of the nth customer
arriving at the system. It is proved that Xn = (nn;gn)
forms a homogeneous Markov chain with state space
N�R+ and transition operator Q = (Qi j)i; j�0, where
Qi j(x;dy) = P(nn+1 = j;gn+1 2 dy=nn = i;gn = x),
defined by (see (Aı̈ssani and Kartashov, 1984)):

Qi j =

8><>:
q j(dy); if i = 0;
q j�i(x;dy); if i� 1; j � i;
p(x;dy); if j = i�1; i� 1;
0; otherwise;

(1)

where8<:
q j(dy) =

R
P(Tj � u < Tj+1;Tj+1�u 2 dy)dH(u);

q j(x;dy) =
¥R
x

P(Tj � u� x < Tj+1 ;Tj+1� (u� x) 2 dy)dH(u);

p(x;dy) =
xR
0

P(x�u 2 dy)dH(u):

Let us also consider an M=G=1 (FIFO;¥) sys-
tem and denote by El the inter-arrivals distribution
(El is an exponential distribution with parameter l),
and take the same distribution of service times than
the G=G=1 one. We introduce the corresponding fol-
lowing notations: T̄n, q̄n, ḡn, n̄n = n̄(q̄n�0) and xn de-
fined as above. The transition operator Q̄ =

�
Q̄i j
�

i; j>0
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of the corresponding Markov chain X̄n = (n̄n; ḡn) in
the M=G=1 system has the same form as in (1), where8>>><>>>:

q j(dy) = p jEl(dy); q j(x;dy) = p j(x)El(dy);
p(x;dy) = p(x;dy);
p j =

R
exp(�lu) (lu) j

j! dH(u);

p j(x) =
R

¥

x exp(�l(u� x)) (l(u�x)) j

j! dH(u):
Let us suppose that the arrival flow of the G=G=1

system is close to the Poisson one. This proximity is
then characterized by the metric:

w� = w�(G;El) =
Z

j
�(t)jG�Elj(dt); (2)

where jaj designates the variation of the measure a
and j� is a weight function verifying the following
conditions:

� j� is non decreasing;

� j�(t + s)� j�(t) �j�(s);8t;s 2 R+;

� j�(0) = 1.

We take j�(t) = edt , with d > 0. In addition, we use
the following notations:

E� =
Z

j
�(t)El(dt); (3)

G� =
Z

j
�(t)G(dt); (4)

w0 = w0(G;El) =
Z
jG�Elj(dt): (5)

2.2 Approximation of the G/G/1 System
by the M/G/1 One

In this section, we introduce some necessary no-
tations and recall the basic theorem of the strong
stability adapted to the studied case. For a general
framework see (Aı̈ssani and Kartashov, 1983; Kar-
tashov, 1996; Benaouicha and Aı̈ssani, 2005). In the
sequel, when no domain of integration is indicated,
an integral is extended over R+.
Consider the s-algebra E , which represents the
product E1 
E2 (E1 is the s-algebra generated by
the countable partition of N and E2 is the Borel
s-algebra of R+).

We denote by mE the space of finite measures
on E , and we introduce the special family of norms
of the form kmkv = å

j�0

R
v( j;y)jm jj(dy); 8m 2 mE ;

where v is a measurable function on N�R+, bounded
below away from zero (not necessarily finite).
This norm induces a corresponding
norm in the space f E of bounded mea-
surable functions on N � R+, namely
k fkv = supk�0supx�0[v(k;x)]

�1j f (k;x)j; 8 f 2
f E ; as well as a norm in the space

of linear operators, namely kPkv =
supk�0supx�0[v(k;x)]

�1
å j�0

R
v( j;y)jPk j(x;dy)j:

We associate to each transition kernel P the lin-
ear mapping P : f E ! f E acting on f 2 f E as
follows, (P f )(k;x) = å j�0

R
Pk j(x;dy) f ( j;y): For

m 2 mE and f 2 f E the symbol m f denotes the
integral m f = å j�0

R
m j(dx) f ( j;x); and f � m

denotes the transition kernel having the form
( f �m)i j(x;A) = f (i;x)m j(A):

Remark 2.1. Using the norm defined on the space
of finite measures introduced in the current section,
we can characterize the proximity of the two systems
G=G=1 and M=G=1 by

kG�Elkv = å
j�0

Z +¥

0
v( j; t)jG�Elj(dt): (6)

Taking in (6), v( j; t) =
�

edt ; if j = 0;
0; if j 6= 0;

where d > 0, one recovers the variational norm de-
fined in (2).

Moreover, taking in (6), v( j; t) =
�

1; if j = 0;
0; if j 6= 0;

one recovers the variational norm defined in (5).

Defintion 2.1. (see (Aı̈ssani and Kartashov, 1983;
Kartashov, 1996)) A Markov chain X with transition
kernel P and invariant measure p is said to be strongly
u-stable with respect to the norm k:ku, if kPku < ¥

and each stochastic kernel Q in some neighborhood
fQ : kQ�Pku < eg has a unique invariant measure
µ = µ(Q) and kp�µku! 0 as kQ�Pku! 0.

The following theorem determines the strong v-
stability conditions of the M=G=1 system after a small
perturbation of the arrivals law. It also gives the esti-
mates of the deviations of both the transition kernels
and the stationary distributions.

Theorem 2.1. (Aı̈ssani and Kartashov, 1984) Sup-
pose that in the M=G=1 system, the following ergod-
icity condition holds:
a) l E(x)< 1; b) 9a> 0 : E(eax) =

R
eaudH(u)<¥;

where x is a random variable representing the service
times.
Suppose also that E� < ¥ and b0 = sup(b : H�(l�
lb) < b), where H� is the Laplace transform of the
probability density of the service times. Then, for all b

such that 1 < b < b0, the Markov chain Xn is strongly
v�stable for the function v(n; t) = bn[exp(�at) +
c�1j�(t)], where:

a > 0; c =
bE�

1�r
; and r =

H�(l�lb)+b

2b
< 1:

In addition, if G� < ¥, and w0 � (b0�b)

b2
0

, then we have
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the margin between the transition operators:

kQ�Qkv � w�(1+b)+w0G�(1+lb)
b4

0
(b0�b)2 ;

where E� and G� are defined respectively in (3) and
(4).
Moreover, if the general distribution of arrivals G is
such that:

w�(G;El)�
1�r

2c0(1+ c)
(1+b+ c1)

�1;

w0(G;El)�
(b0�b)

b2
0

;

we obtain the deviation between the stationary dis-
tributions p and p̄ associated, respectively, to the
Markov chains Xn and X̄n, given by:
Er := kp�pk� 2[(1+b)w�+c1w0]c0c2(1+c); (7)

where c0; c1; c2 are defined as follows:

c
0

0 � c0;

where c
0

0 = 1+
(1�lm)(b�1)(2�r)E�

2(1�r)2 and m = E(x);

c1 = G�(1+lb)
b4

0
(b0�b)2 ;

c2 =
(1�lm)(b�1)(2�r)

2(1�r)b
:

Remark 2.2. The assumptions a) and b) of Theorem
2.1 imply the existence of a stationary distribution p̄

for the imbedded Markov chain X̄n in the M=G=1 sys-
tem. This distribution has the following form:
p̄(fkg;A)= p̄k(A)= pkEl(A); 8 fkg�N and A�R+;

where pk = lim
n!¥

P(V̄n = k) = lim
t!¥

P(X(t) = k), where,

X(t) represents the size of the M=G=1 system at time
t.
In general it is not possible to have stationary distri-
bution lim

t!¥
P(X(t) = k) of the M=G=1 system. How-

ever, one can compute its corresponding generating
function P(z) given by (Kleinrock, 1975):

P(z) = H�(l�lz)
(1�r)(1� z)
H�(l�lz)� z

; (8)

where r = l E(x), H� represents the Laplace trans-
form of the probability density of the service time x,
and z is a complex number verifying jzj � 1. This for-
mula is called Pollaczek-Khinchin formula. Its inver-
sion allows us to find the stationary distribution P.
Formula (8) permits us to compute the stationary dis-
tribution of the queue length in a M=G=1 system. Un-
fortunately, for the G=G=1 system, this exact formula
is not known. So, if we suppose that the G=G=1 sys-
tem is close to the M=G=1 system, then we can use
formula (8) to approximate the G=G=1 system char-
acteristics with prior estimation of the corresponding
approximation error.

Given the bound in formula (7) in Theorem 2.1, it
remains to compute w� and w0 and methods to do so
will be discussed in the following.

3 BOUNDARY CORRECTION
TECHNIQUES IN
NONPARAMETRIC DENSITY
ESTIMATION

Different standard types of nonparametric density es-
timate are performed. For a survey, see the mono-
graph by Silverman (Silverman, 1986). The most
known and used nonparametric estimation method is
the kernel density estimate. If X1; :::;Xn is a sample
coming from a random variable X with probability
density function f and distribution F , then the Parzen-
Rosenblatt kernel estimator (Parzen, 1962; Rosen-
blatt, 1956) of the density f (x) for each point x 2R is
given by:

fn(x) =
1

nhn

n

å
j=1

K(
x�X j

hn
); (9)

where K is a symmetric density function called the
kernel and hn is the bandwidth.

Even if the choice of the kernel K is not of a great
importance, there would still remain the question of
which window width hn to choose. The problem of
bandwidth selection has been extensively studied (for
a survey, see (Jones et al., 1996)). The classical sym-
metric kernel estimate works well when estimating
densities with unbounded support. However, when
these latter are defined on the positive real line [0;¥[,
without correction, the kernel estimates suffer from
boundary effects since they have a boundary bias (the
expected value of the standard kernel estimate at x= 0
converges to the half value of the underlying density
when f is twice continuously differentiable on its sup-
port [0;+¥) (Bouezmarni and Scaillet, 2005; Schus-
ter, 1985)). In fact, using a fixed symmetric kernel
is not appropriate for fitting densities with bounded
supports as a weight is given outside the support.

Several approaches have been introduced to get
a better estimation on the border. Some of them
proposed the use of particular kernels or bandwidths
(Schuster, 1985), other techniques propose the use
of estimators based on flexible kernels (asymmetric
kernels (Bouezmarni and Scaillet, 2005; Chen, 2000)
and smoothed histograms (Bouezmarni and Scaillet,
2005)). They are very simple in implementation, free
of boundary bias, always nonnegative, their support
matches the support of the probability density func-
tion to be estimated, and their rate of convergence for
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the mean integrated squared error is O(n�4=5). Below,
are briefly discussed the estimators which we will use
in the context of this paper.

3.1 Reflection Method

Schuster (Schuster, 1985) suggests creating the mirror
image of the data in the other side of the boundary
and then applying the estimator (9) for the set of the
initial data and their reflection. f (x) is then estimated,
for x� 0, as follows:

f̃n(x) =
1

nhn

n

å
j=1

[K(
x�X j

hn
)+K(

x+X j

hn
)]: (10)

3.2 Asymmetric Gamma Kernel
Estimator

A simple idea for avoiding boundary effects is using
a flexible kernel, which never assigns a weight out
of the support of the density function and which cor-
rects the boundary effects automatically and implic-
itly. The first category of the flexible kernels consists
of the asymmetric kernels (Bouezmarni and Scaillet,
2005; Chen, 2000) defined by the form

f̂b(x) =
1
n

n

å
i=1

K(x;b)(Xi); (11)

where b is the bandwidth and the asymmetric kernel
K can be taken as a Gamma density KG with the pa-
rameters (x=b+1;b) given by

KG(
x
b
+1;b)(t) =

tx=be�t=b

bx=b+1G(x=b+1)
: (12)

3.3 Smoothed Histograms

The second category of flexible kernels consists
of smoothed histograms (Bouezmarni and Scaillet,
2005) defined by the form

f̂k(x) = k
+¥

å
i=0

wi;k pki(x); (13)

where the random weights wi;k are given by

wi;k = Fn(
i+1

k
)�Fn(

i
k
);

where Fn is the empiric distribution, k is the smooth-
ing parameter and pki(:) can be taken as a Poisson
distribution with parameter kx,

pki(x) = e�kx (kx)i

i!
; i = 0;1; ::: (14)

4 STATISTICAL TECHNIQUES
FOR THE APPROXIMATION
OF THE G=G=1 SYSTEM BY
THE M=G=1 ONE

We want to apply nonparametric density estimation
methods to determine the variation distances w0 and
w� defined respectively in (2) and (5), the proximity
error Er defined in (7) between the stationary distri-
butions of the G=G=1 and M=G=1 systems and con-
fidence intervals for the difference between the char-
acteristics of the considered systems in the stationary
state. We use the discrete event simulation approach
(Banks et al., 1996) to simulate the according systems
and we apply the Student test for the acceptance or
rejection of the equality of the corresponding charac-
teristics.

Note by S1 and S2 the G=G=1 and M=G=1 sys-
tems respectively. Let us repeat the simulation of the
system Si(i = 1;2) Ri times. Note by q

( j)
i the theo-

retical value of the jth characteristic of Si. At the rth
repetition of the simulation of the system Si, one ob-
tains the estimate Y ( j)

ri of the characteristic q
( j)
i . Sup-

pose that the estimators Y ( j)
ri are unbiased. This im-

plies that q
( j)
i = E(Y ( j)

ri ); r = 1;2; :::;Ri; i = 1;2.
For the comparison of the two queueing systems

S1 and S2, we take the number of simulations R1 =
R2 = R large enough. With a significance level a, the
confidence interval for q

( j)
1 �q

( j)
2 is given by the fol-

lowing form:

(ȳ( j)
1 � ȳ( j)

2 )� t(a=2 ; n)s(ȳ
( j)
1 � ȳ( j)

2 ) � q
( j)
1 �q

( j)
2 (15)

� (ȳ( j)
1 � ȳ( j)

2 )+ t(a=2 ; n)s(ȳ
( j)
1 � ȳ( j)

2 );

where ȳ( j)
i = 1

R

R
å

r=1
Y ( j)

ri ; i = 1;2, s(ȳ( j)
1 � ȳ( j)

2 ) is the

standard error of the punctual specified estimator, n =
2(R� 1) is the number of degrees of freedom, and
t(a=2 ; n) is a value to be taken on the Student table.

To take a decision on how significant is the differ-
ence between the tow systems, we check if the con-
fidence interval for q

( j)
1 �q

( j)
2 contains the zero value

or not. We have the following conclusions:

1. If the confidence interval for q
( j)
1 � q

( j)
2 does not

contain the zero (i.e. it is totally on the left-hand
side or on the right-hand side of zero), then it is
extremely probable that q

( j)
1 < q

( j)
2 or q

( j)
1 > q

( j)
2

respectively.

2. If the confidence interval for q
( j)
1 � q

( j)
2 contains

the zero, then there is no statistical obviousness
affirming that the jth characteristic of one of the
systems is better than that of the other.
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Table 1: Performance measures with different estimators.

g(x) gn(x) g̃n(x) ĝb(x) ĝk(x)
Mean arrival rate l 1.6874 1.5392 1.6503 1.6851 1.6840

Traffic intensity of the system l

µ 0.1562 0.1578 0.1570 0.1564 0.1567
Variation distance w0 0.0096 0.1287 0.0114 0.0102 0.0105
Variation distance w� 0.0183 0.2536 0.0311 0.0206 0.0224

Error on stationary distributions Er 0.0356 0.0452 0.0378 0.0377

In the context of this paper, we consider the fol-
lowing characteristics:

� n̄i; i = 1;2, mean number of customers in the sys-
tem i.

� w̄i; i = 1;2, output rate in the system i.

� t̄i; i = 1;2, sojourn mean time of a customer in the
system i (response time of the system).

� r̄i; i = 1;2, occupation rate of the system i.

To realize this work, we elaborated an algorithm
which follows the following steps:

1) Generation of a sample of size n of general ar-
rivals distribution G with theoretical density g(x).

2) Use of a nonparametric estimation method to es-
timate the theoretical density function g(x) by a
function denoted in general g�n(x).

3) Calculation of the mean arrival rate given by: l =
1=

R
xdG(x) = 1=

R
xg(x)dx = 1=

R
xg�n(x)dx.

4) Verification, in this case, of the strong stability
conditions given in the subsection 2.2. For calcu-
lation considerations, the variation distances w0
and w� are given respectively by: w0 =

R
jG�

Elj(dx) ’
R
jg�n � elj(x)dx and w� =

R
edxjG�

Elj(dx)’
R

edxjg�n� elj(x)dx, where d > 0.

5) Computation of the minimal error on the station-
ary distributions of the considered systems ac-
cording to (7).

6) Application of the Student test to determine the
difference between the corresponding character-
istics of the considered systems according to (15).

Simulation studies were performed under the Matlab
7.1 environment. The Epanechnikov kernel (Silver-
man, 1986) is used throughout for estimators involv-
ing symmetric kernels. The bandwidth hn is chosen
to minimize the criterion of the ”least squares cross-
validation” (Jones et al., 1996). The smoothing pa-
rameters b and k are chosen according to a bandwidth
selection method which leads to an asymptotically op-
timal window in the sense of minimizing L1 distance
(Bouezmarni and Scaillet, 2005).

4.1 Simulation Study

We consider a G=G=1 system such that the gen-
eral inter-arrivals distribution G is assumed to be a
Gamma distribution with parameters a = 0:7;b = 2,
denoted G(0:7;2), with a theoretical density g(x) and
the service times distribution is Cox2 with parame-
ters: µ1 = 3, µ2 = 10, a = 0:005.

By generating a sample coming from the G(0:7;2)
distribution, we use the different nonparametric esti-
mators given respectively in (9)-(14) to estimate the
theoretical density g(x)

For these estimators, we take the sample size n =
200 and the number of simulations R = 100. For
the construction of confidence intervals using the Stu-
dent test, we take the significance level a = 0:05.
Hence the number of degrees of freedom n = 198 and
t(a=2 ; n) = t(0:025 ; 198) = 1:96.

Curves of the theoretical and estimated densities
are illustrated in Figure 1. Different performance
measures are listed in Table 1.

The confidence intervals are shown respectively
in Tables 2, 3, 4, 5 and 6, by giving their lower and
upper bounds.

Table 2: Confidence intervals with theoretical density g(x).

Characteristics difference Lower bound Upper bound
n̄1� n̄2 -0.0204 0.0098
w̄1� w̄2 -0.0120 0.0016
t̄1� t̄2 -0.0523 0.0273

r̄1� r̄2 -0.0087 0.0025

Table 3: Confidence intervals with Parzen-Rosenblatt esti-
mator gn(x).

Characteristics difference Lower bound Upper bound
n̄1� n̄2 -0.0394 -0.0120
w̄1� w̄2 -0.0305 -0.0106
t̄1� t̄2 -0.0923 -0.0416

r̄1� r̄2 -0.0637 -0.0398

Discussion: Figure 1 shows that the use of nonpara-
metric density estimation methods taking into account
the correction of boundary effects improves the qual-
ity of the estimation (compared to the curve of of the
Parzen-Rosenblatt estimator, those of mirror image,
asymmetric Gamma kernel and smoothed histogram
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Figure 1: Theoretical density g(x) = G(0:7;2)(x), and estimated densities.

Table 4: Confidence intervals with mirror image estimator
g̃n(x).

Characteristics difference Lower bound Upper bound
n̄1� n̄2 -0.0389 0.0089
w̄1� w̄2 -0.0314 0.0122
t̄1� t̄2 -0.0565 0.0697

r̄1� r̄2 -0.0128 0.0130

Table 5: Confidence intervals with asymmetric Gamma ker-
nel estimator ĝb(x).

Characteristics difference Lower bound Upper bound
n̄1� n̄2 -0.0213 0.0018
w̄1� w̄2 -0.0175 0.0019
t̄1� t̄2 -0.0379 0.0365

r̄1� r̄2 -0.0085 0.0027

estimators are closer to the curve of the theoretical
density). We note in Table 1 that the approximation
error on the stationary distributions of the G=G=1 and
M=G=1 systems was given when applying nonpara-
metric density estimation methods by considering the
correction of boundary effects such in the cases of us-
ing the mirror image estimator (Er = 0:0452), asym-
metric Gamma kernel estimator (Er = 0:0378) and
smoothed histogram (Er = 0:0377). In addition, these
two last errors are close to the one given when us-
ing the theoretical density g(x) (Er = 0:0356). But,
when applying the Parzen-Rosenblatt estimator which
does not take into account the correction of bound-
ary effects, the approximation error Er on the station-
ary distributions of the quoted systems could not be
given. This shows the importance of the smallness of
the proximity error of the two corresponding arrival
distributions of the considered systems, characterized
by the variation distances w0 and w�.

We notice also that in the cases of using the theo-
retical density g(x), the mirror image estimator g̃n(x),
the Gamma kernel estimator ĝb(x) and the smoothed
histogram ĝk(x) , with a significance level a = 0:05,
we do not reject any hypotheses since all the intervals
contain zero (see Tables 2, 4, 5 and 6). This means
that, with this level a = 0:05, the corresponding char-

Table 6: Confidence intervals with smoothed histogram
ĝk(x).

Characteristics difference Lower bound Upper bound
n̄1� n̄2 -0.0254 0.0012
w̄1� w̄2 -0.0138 0.0022
t̄1� t̄2 -0.0386 0.0296

r̄1� r̄2 -0.0092 0.0038

acteristics of the two considered systems are not sig-
nificantly different. In addition, we remark that the
confidence intervals are very close. That gives an idea
about the accuracy of the approximation. But in the
case of using the Parzen-Rosenblatt estimator gn(x),
with the same level a = 0:05, all the hypotheses are
rejected since all the intervals do not contain zero (see
Table 3). This means that the risk of wrongly reject-
ing these hypotheses is of order 5%. So, we prefer to
say that the corresponding characteristics of the two
systems considered are significantly different.
The theoretical results (Aı̈ssani and Kartashov, 1984)
are then illustrated by numerical results. Indeed, it
is noted that in practice, for a low margin between
the service laws of the G=G=1 and M=G=1 queueing
systems, it is possible to approximate the G=G=1 sys-
tems characteristics with the corresponding ones of
the M=G=1 system when the general distribution G
of arrivals is unknown and must be estimated. In ad-
dition, this approximation is as much accurate than
w� and w0 are small. Note also that contrary to non
parametric methods taking into account the boundary
bias correction, the classical kernel density estimate
is inappropriate for determining this type of approxi-
mation.

5 CONCLUSIONS AND FURTHER
RESEARCH

Simulation studies presented in this paper show the
importance of some aspects in the application of the

  Statistical�Methodology�for�Approximating�G/G/1�Queues
by�the�Strong�Stability�Technique

247



strong stability method to queueing systems. First of
all, the smallness of the perturbation done has a sig-
nificant impact on the determination of the proximity
of the considered systems and hence on the approxi-
mation error on their stationary distributions. On the
other hand, when statistical methods are used to es-
timate an unknown density function in a considered
system, we cannot ignore the problem of boundary
effects.

To summarize, we show the interest of some sta-
tistical techniques (nonparametric estimation meth-
ods with boundary bias techniques and Student test)
to measure the performance of the strong stability
method in a M=G=1 queueing system after perturba-
tion of the arrival flow. Indeed, we note that practi-
cally, for a low margin between the arrival laws of the
G=G=1 and M=G=1 systems, and by taking into ac-
count the boundary effects when using nonparametric
density estimation to estimate the unknown arrivals
law G in the G=G=1 system, it is possible to approx-
imate the G=G=1 system’s characteristics by the cor-
responding ones of the M=G=1 system.

A closely field of practical interest can be de-
scribed as follows: when modeling insurance claims,
one could be interested in the loss distribution which
describes the probability distribution of payment to
the insured. It is a positive variable, hence the pres-
ence of the boundary bias problem. The asymmetric
Beta kernel estimates are suitable for estimating this
type of heavy-tailed distributions.
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